High Performance Material Supplier for innovative resists, polymers, photopolymers and ancillaries ## **Product overview** #### **Negative Photoresists** for UV (mask aligner, laser), Deep UV and e-beam lithography #### **Positive Photoresists** for UV, laser lithography and greyscale patterning #### **Hybrid Polymers** for micro- and nano-optical applications #### Nanoimprint Resists for thermal and UV-based nanoimprint lithography #### **Inkjet Materials** functional materials for inkjet-printing **Ancillaries** ## **Negative Photoresists** # Photoresists for UV (mask aligner, laser)/ DUV and e-beam lithography - Effective for broadband, i-line, Deep UV, e-beam exposure, or laser direct writing @ 405 nm - Lift-off resists with tunable pattern profile, high temperature stability up to 160 °C - Variety of viscosities for different film thicknesses in one spin-coating step | Product series | Material class | Compatible processes | Prefered
applications | Unique features | |-------------------|--|---|---|---| | ma-N 1400 | Aromatic bisazide/
novolak, non-Car | UV mask aligner, laser
& stepper lithography | Single layer lift off,
etch mask, mould for
electroplating | aqueous-alkaline
development, thermal
stability up to 110°C,
easy to remove | | ma-N 400 | Aromatic bisazide/
novolak, non-Car | UV mask aligner, laser
& stepper lithography | Single layer lift off,
etch mask, mould for
electroplating | aqueous-alkaline
development, thermal
stable up to 160°C,
easy to remove | | ma-N 2400 | Aromatic bisazide/
novolak, non-Car | e-beam, Deep UV
lithography | Etch mask | aqueous-alkaline
development, robust &
easy processing, easy
to remove | | mr-DWL | Epoxy resin, CAR | UV mask aligner, laser
& stepper lithography,
2PP | Mold for electro-
plating, master for
replication, etch mask | light sensitive up to
410 nm, for pattern
transfer processes and
permanent applica-
tions | | EpoCore & EpoClad | Epoxy resin, CAR | UV lithography | Polymer based
waveguides, mould for
electroplating, master
for replication, etch
mask | highly transparent
to visible light, high
thermal stability, for
pattern transfer pro-
cesses and permanent
applications | | mr-EBL 6000 | Epoxy resin, CAR | e-beam,
UV lithography | Etch mask | for pattern transfer
processes and perma-
nent applications | ## **Positive Photoresists** ### Positive Photoresists for UV lithography (mask aligner, laser, greyscale exposure) - Variety of viscosities for 0.1 μ m 60 μ m film thickness in one spin-coating step - Effective for broadband, g-line, h-line or i-line exposure and laser direct writing at 350...450 nm - No post exposure bake - Easy removal | Product series | Material class | Compatible processes | Prefered applications | Unique features | |----------------|----------------|--|---|--| | ma-P 1200G | DNQ/ novolak | Greyscale lithography,
UV lithography,
Laser interference
lithography | UV moulding, Electro-
plating, Dry etching
•2.5D structures in
micro-optics, MEMS
and MOEMS, wafer-
level optics, micro-
fluidics | 1-60 µm film thickness
by spin-coating,
Aqueous-alkaline
development,
Easy to remove,
For pattern transfer | | ma-1200 | DNQ/ novolak | UV lithography | Dry etching, lon implantation, Electroplating, Pattern reflow + UV moulding •LEDs, microsystems, semiconductor components, microoptics | 0.3-40 µm film thick-
ness by spin-coating,
Aqueous-alkaline
development,
Easy to remove,
For pattern transfer | | ma-P1275HV | DNQ/ novolak | UV lithography | Electroplating, Dry
etching, Ion implanta-
tion, Pattern reflow +
UV moulding
•microsystems, micro-
optics | 10-50 µm film thickness by spin-coating, Aqueous-alkaline development, Easy to remove, For pattern transfer | | mr-P 1200 LIL | DNQ/ novolak | Laser interference
lithography,
UV lithography | Dry etching, electro-
plating
•Laminar grids,
VSL grids | 0.1-0.5 µm film thick-
ness by spin-coating,
Aqueous-alkaline
development,
Easy to remove,
For pattern transfer | ## **Hybrid Polymers** # **UV-curable Hybrid Polymers for for micro-optical applications.** - Excellent transparency - Excellent mechanical properties - High chemical and physical stability - Excellent replication fidelity - Ready-to-use solutions | Product series | Material class | Compatible processes | Prefered applications | Unique features | |-----------------------|--|--|--|--| | OrmoComp [®] | Si-containing acrylate-
functionalized pre-
cursor polymer | UV Molding, UV
Lithography, 2PP, 3D
printing | Micro- and nano-
optical devices (e.g.
micro lenses, DOE,
gratings) | very high temperature
and climate stability,
PDMS compatibility | | OrmoStamp® | Si-containing acrylate-
functionalized pre-
cursor polymer | UV Molding | Working stamp fabri-
cation | Intrinsic release
properties, excellent
pattern fidelity down
to sub-100nm features | | OrmoClear®FX | Si-containing acrylate-
functionalized pre-
cursor polymer | UV Molding, UV Lithography, 2PP | Micro- and nanoopti-
cal devices (e.g. micro
lenses, DOE, gratings),
micro fluidics | high temperature and
climate stability, PDMS
compatibility | | OrmoClear® series | Si-containing acrylate-
functionalized pre-
cursor polymer | UV Molding, UV Litho-
graphy, 2PP | Micro-optical devices
(e.g. micro lenses,
DOE, gratings) | Low volume shrinkage | | OrmoCore and OrmoClad | Si-containing acrylate-
functionalized pre-
cursor polymer | UV Molding, UV Lithography | Wave guides, beam splitter, optical inter connectors | Low optical loss, no birefringence | ## **Nanoimprint Resists** Nanoimprint Lithography (NIL) is a straight forward, low cost, and high throughput capable technology for the fabrication of nanometer scaled patterns. Main application fields are photonics, next generation electronics, as well as bio- and sensor applications. | Product series | Material class | Compatible processes | Prefered applications | Unique features | |--------------------|------------------------------|---------------------------|---|---| | mr-NIL200 series | Acrylate monomer formulation | UV-NIL | Dry etch mask for pattern transfer by plasma etching, for gas impermeable working stamps | UV-crosslinking, purely organic, no primer needed, low viscosity, insensitive versus oxygen | | mr-NIL210 series | Acrylate monomer formulation | soft UV-NIL | Dry etch mask, for gas
permeable working
stamps | UV-crosslinking, purely organic | | mr-NIL212FC series | Acrylate monomer formulation | soft UV-NIL | Dry etch mask, for gas
permeable working
stamps | UV-crosslinking, fast curing, compatible to low exposure dose in the presence of oxygen | | mr-UVCur26SF | Acrylate monomer formulation | R2R UV-NIL, S&R
UV-NIL | Dry etch mask,
permanent optical
applications, for gas
impermeable working
stamps | Very low viscosity,
solvent-free | | mr-XNIL26SF | Acrylate monomer formulation | UV-NIL | Dry etch mask, for gas
impermeable working
stamps | UV-crosslinking, purely organic, high content of fluorinated compounds | | Product series | Material class | Compatible processes | Prefered applications | Unique features | |------------------------|--|----------------------------|--|---| | mr-I T85 series | Cycloolefin-Copoly-
mer, thermoplastic
poylmer formulation | T-NIL | optical devices, micro
fluidics, lab-on-a-chip | Purely organic, very
non-polar, insoluble
in acids and alcaline
solutions, T _q 85°C | | mr-I 7000R series | Thermoplastic polymer formulation | T-NIL | Dry etch mask | Purely organic, T _g = 60 °C | | mr-I 8000R series | Thermoplastic polymer formulation | T-NIL | Dry etch mask | Purely organic, T _g = 115 °C | | mr-I 9000M series | Thermoset polymer formulation | T-NIL | Dry etch mask | Purely organic, $T_g = 35$ °C, thermal curing, no T_g after imprint | | mr-NIL 6000E series | Epoxy oligomer formulation | thermal assisted
UV-NIL | Dry etch mask | Purely organic, T _g = 1 °C | | SIPOL series | Thermoplastic polymer formulation | T-NIL | Dry etch mask, 2-layer
system with UL1 for
deep trenches etching | Si-containing, T _g = 63 °C | | mr-I PMMA35k
series | Thermoplastic polymer formulation | T-NIL | Rudimental NIL investi-
gations | Purely organic, T _g = 105 °C | ### Inkjet Materials # **Functional materials for inkjet-printing** - Available in different viscosities (adjustable) - Suitable in commercial inkjet printing devices - Focused on high reliability of droplet generation - UV-curable formulations | Product series | Material class | Compatible processes | Prefered applications | Unique features | |----------------|---|--|---|---| | InkEpo | Epoxy resin based,
CAR | Inkjet Printing | Protecting layer, micro
lenses & micro lens
array, spacer, glue | solvent containing, UV curable, excellent thermal, mechanical and chemical stability, optically transparent | | InkOrmo | Si-containing acry-
late-functionalized
precursor polymer | Inkjet Printing | micro-lenses, wavegui-
des, microfluidics | UV-cureable, excellent
thermal, mechanical
and chemical stability
of cured patterns | | mr-UVCur26SF | Acrylate monomer formulation | Inkjet Printing, step
& repeat NIL process,
R2R UV-NIL | large area permanent
nano structuring | solvent-free, organic,
photo-curable nano-
imprint resist for inkjet
dispensing | ## Ancillaries #### Overview Ancillaries - Thinner - Primer - Developer - Remover - Protection and transfer layers - Etching solutions | Product | Material class | Compatible
processes/ product series | Prefered applications/ comments | |---------------------------------------|----------------|---|---| | Thinner | | | | | ma-T 1045 | Solvent based | mr-NIL 6000E, mr-I 9000M | NIL resists | | ma-T 1046 | Solvent based | ma-N 1400 | - | | ma-T 1050 | Solvent based | ma-P 1200(HV), ma-P 1200 G,
ma-P 1200LIL, Hybrid polymers,
mr-I 7000, mr-I 8000, mr-NIL26SF,
mr-NIL212FC | Positive and NIL resists,
hybrid polymers for FT ¹ < 500 nm | | mr-T 1049 | Solvent based | ma-N 400 | - | | mr-T 1075 | Solvent based | mr-NIL210, FT ¹ >500nm | NIL resists | | mr-T 1078 | Solvent based | mr-NIL210, mr-NIL200,
film thickness <500nm | NIL resists | | mr-T 1090 | Solvent based | ma-N 2400 | - | | OrmoThin | Solvent based | Hybrid polymers for FT ¹ > 500 nm | Hybrid polymers for FT ¹ > 500nm | | Primer | | | | | HMDS-Primer | HMDS based | ma-N 400, ma-N 1400,
ma-P 1200G, ma-P 1200(HV),
ma-P 1200LIL | Si, SiO ₂ and glass substrates | | mr-Primer 80/20 1FT = film thickness | HMDS based | ma-N 2400, ma-N 400, ma-N 1400
ma-P 1200(HV) | Si, SiO ₂ and glass substrates | ¹ FT = film thickness | Product | Material class | Compatible processes/ product series | Prefered applications/ comments | |-----------------------------------|---|--|--| | SurPass 3000 | Aqueous | Epoxy resists - SU-8, EpoCore,
EpoClad and mr-DWL | Various substrates | | SurPass 4000 | Aqueous | ma-N 2400, ma-N 400,
ma-N 1400, ma-P 1200G,
ma-P 1200(HV), ma-P 1200LIL | Various substrates | | OrmoPrime®08 | Si-containing adhesion promoter | OrmoClear®FX, OrmoClear®, OrmoComp®, OrmoCore & OrmoClad, OrmoStamp® | Various substrates e.g. Si, glass,
quartz, ~ 130nm FT¹
by spin coating | | OrmoPrime®20 | Si-containing adhesion promoter | OrmoClear®FX, OrmoClear®,
OrmoComp®, OrmoCore &
OrmoClad, OrmoStamp® | Various substrates e.g. Si, glass,
quartz, $FT^1 < 20$ nm by spin coating
or deposition from the gas phase | | mr-APS1 | Si-containing adhesion promoter | mr-NIL210, mr-NIL212FC,
mr-UVCur26SF mr-XNIL26SF | Forms covalent bonds to oxidic
surfaces and acrylate based
coatings, FT¹(spin-coating) < 10nm | | Developer | | | | | ma-D 331 | Aqueous-alkaline,
NaOH based | ma-P 1200(HV), ma-P 1200G in
binary UV lithography, thin layers
of ma-N 2400 | - | | ma-D 331/S | Aqueous-alkaline,
NaOH based | ma-P 1200(HV), ma-P 1200G in
binary UV lithography, thin layers
of ma-N 400 | Surfactant containing | | ma-D 332 | Aqueous-alkaline,
NaOH based | thicker layers of ma-N 2400 | | | ma-D 332/S | Aqueous-alkaline,
NaOH based | thicker layers of ma-N 400 | Surfactant containing | | ma-D 374/S | Aqueous-alkaline,
sodium metasilicate
based | ma-P 1200LIL | Surfactant containing | | ma-D 377 | Aqueous-alkaline,
sodium metasilicate
based | ma-N 2400, ma-N 400,
ma-P 1200(HV) | on sensitive, e.g. Al containing substrates | | ma-D 525 | Aqueous-alkaline,
TMAH based | ma-N 2400 | | | ma-D 530/S 1 FT = film thickness | Aqueous-alkaline,
TMAH based | thin layers of ma-N 400 | Surfactant containing | ¹ FT = film thickness | Product | Material class | Compatible processes/ product series | Prefered applications/ comments | |-----------------------------------|---|--|---------------------------------| | ma-D 531/S | Aqueous-alkaline,
TMAH based | thin layers of ma-N 400 | Surfactant containing | | ma-D 532/S | Aqueous-alkaline,
TMAH based | ma-P 1200G greyscale lithography
for ≥ 15µm FT¹, thicker layers of
ma-N 400 | Surfactant containing | | ma-D 533/S | Aqueous-alkaline,
TMAH based | ma-N 1400 | Surfactant containing | | mr-D 526/S | Aqueous-alkaline,
TMAH based | ma-P 1200G gray scale lithography
for < 15 μm FT¹, ma-P 1200(HV) | Surfactant containing | | mr-D 4000/75 | Aqueous-alkaline,
K ₂ CO ₃ based | DuPont MX5000 dry film resists | Spray development | | ma-D 4000/100 | Aqueous-alkaline,
K ₂ CO ₃ based | DuPont WBR2000 dry film resists | Spray development | | mr-Dev 600 | Solvent based | EpoCore, EpoClad, mr-DWL, mr-
UVL 6000, mr-EBL 6000, (all SU-8
resists, DJML SUEX dry film) | - | | mr-DevCH | Solvent based | DJML ADEX dry film series | - | | OrmoDev | Solvent based | Hybrid polymers | - | | Remover | | | | | mr-Rem 500 | Solvent based, NMP-
free, NEP-containing | ma-N 2400, ma-N 400,
ma-N 1400 mr-EBL 6000,
mr-DWL, EpoCore, EpoClad,
ma-P 1200G, ma-P 1200(HV) ma-P
1200LIL, InkEpo, mr-UVCur26SF,
SU-8, SU-8 2000, SU-8 3000,
SU-8 TF 6000, PMMA/Co-Polymer,
LOR / PMGI | - | | mr-Rem 700 | Solvent based, NMP- & NEP-free, pH ~ 8 | ma-N 2400, ma-N 400,
ma-N 1400, mr-EBL 6000,
mr-DWL, EpoCore,EpoClad,
ma-P 1200G, ma-P 1200(HV),
ma-P 1200LIL, InkEpo, SU-8,
SU-8 2000, SU-8 3000,
SU-8 TF 6000, PMMA/Co-
Polymere, LOR / PMGI | - | | ma-R 404/S 1 FT = film thickness | Aqueous ,strongly alkaline, NaOH based | ma-N 2400, ma-N 400,
ma-N 1400, ma-P 1200G,
ma-P 1200(HV), ma-P 1200LIL | Surfactant containing | ¹ FT = film thickness | Product | Material class | Compatible processes/ product series | Prefered applications/ comments | |---------------------|---|--|---| | Protection and tra | ansfer layers | | | | UL1 series | Thermoplastic polymer thin film formulation | SIPOL | Organic underlayer / transfer
layer for pattern magnification via
etching | | mr-Conductive Layer | Aqueous polymer solution | ma-N 2400 | for patterning by electron beam
lithogaphy on non-conductive
substrates and for SEM inspection
of non-conductive samples | | DisCharge H2O | Aqueous polymer solution | PMMA/Co-Polymere | for patterning by electron beam
lithogaphy on non-conductive
substrates and for SEM inspection
of non-conductive samples | | mr-PL series | Novolak resin solution | Covering sensible metal patterns or topography | Protection layer | | Etching solutions | | | | | Chrome Etch 18 | Strongly acidic,
aqueous etchant | Etching of Cr layers | - | ¹ FT = film thickness