

Functional Materials for Inkjet Printing

- InkOrmo
- InkEpo
- mr-UVCur26SF

Broad range of applications

- Optical components (transparency and stability)
- Packaging (stability)
- Nano Imprint Lithography (low residual layer thickness)
- Etch mask for plasma etching (stability)

Unique features of our materials

- Compatible with commercial inkjet printing equipment
- Tailored for stable drop generation
- UV-curable formulations

- Made in Germany -

micro resist technology GmbH Gesellschaft für chemische Materialien spezieller Photoresistsysteme mbH

Köpenicker Str. 325 12555 Berlin GERMANY

phone	+49 30 64 16 70 100		
fax	+49 30 64 16 70 200		
mail	sales@microresist.de		
info	www.microresist.com		

August 2022

verview

	Product o
ing	Inks ¹ Type of mater
	Properties
it Pri	Available visco (measured at 2 [mPa*s]
	Solvent free
Y	Photo curing s sensitivity [nm
	Oxygen sensit
O	Properties
S	RI (at 589 nm) curing
, C	CTE (20 – 150 [ppm/K]
J	dn/dT [10 ⁻⁴ /K]
	Young Modul
Σ	Hardness (inde [MPa]
	Water absorpt
DDa	¹ Our inks are com LED ³ Formation of
Ĭ	Viscosity
Ĭ	25

IIIKS	inkonno senes	inkepo series	IIII-OVCUI203F			
Type of material	Optical polymer	Optical polymer	Resist			
Properties before UV-curing						
Available viscosities (measured at 25°C) [mPa*s]	7.0 ± 1.0 12 ± 1.5 18 ± 2	5.0 ± 0.3 8.0 ± 0.5 12 ± 1 25 ± 1	15 ± 2			
Solvent free	No	No	Yes			
Photo curing spectral sensitivity [nm]	300 - 410	300 – 390	365 - 405²			
Oxygen sensitive curing	No	No	Yes ³			

4

s after UV-curing

RI (at 589 nm) after curing	1.517 – 1.520 ⁴	1.5554	1.518
CTE (20 – 150 °C) [ppm/K]	150	~ 50	n/a
dn/dT [10 ⁻⁴ /K]	-2.0	-0.7	n/a
Young Modulus [GPa]	~ 1	~ 2	n/a
Hardness (indentation) [MPa]	68 ± 1	n/a	n/a
Water absorption	< 0.5%	< 0.5%	n/a

patible and have been tested on several inkjet printing tools. List available upon request ² Hg bulb lamp or monochromatic an inhibition layer when UV-cured in presence of oxygen ⁴ Depends on hard-bake conditions

Optical properties

Specific properties

InkOrmo* and InkEpo*

- • Permanent applications
- • Optimized for optical applications
- • High thermal stability up to 300 °C (short term),
- • High physical and chemical stability
- • Excellent mechanical properties

mr-UVCur26SF

- Solvent-free ink
- Compatible with NIL** process
- Optimized for easy demolding after NIL
- Excellent plasma etch resistance
- No evaporation of formulation components

¹ The transmission is given for a thickness of 20 µm for InkOrmo, and a thickness of 1 µm for InkEpo and a thickness of 2 µm for mr-UVCur26SF

*Inkjetable optical polymers: EP 2 159 040 B1 "Micro optical articles, process for their production and uses" **NIL stands for Nano Imprint Lithography

Example for microlens fabrication InkOrmo and InkEpo

Example for NIL mr-UVCur26SF

¹ The solvent evaporation step can be done with or without heating depending on process constraints ² Either the substrate or the stamp needs to be transparent in the range of 365 – 405 nm

InkEpo - not required

Substrate preparation

Adhesion

• Adhesion improved by the use of an adhesion promoter

InkOrmo - OrmoPrime08, OrmoPrime20

Surface energy modification

• The profile of the printed droplet can be controlled by modifying the substrate surface energy

InkOrmo & InkEpo - Allows to reach a higher / lower profile

mr-UVCur26SF - Allows to increase the volume deposited / surface area for high-aspect-ratio NIL cavities

mr-UVCur26SF - mr-APS1

Surface pre-pattern

• Possible to print on substrates involving topography

InkOrmo & InkEpo - Topography can be specifically designed to confine InkOrmo onto desired locations

Process highlights and possible continuations

- Process compatible to non-flat as well as curved substrates and roll-to-roll (R2R)
- High compatibility to processes leading to high throughput and monolithic components

Suggested applications

InkOrmo & InkEpo

- • Micro lenses (single or arrays)
- Optical waveguides
- • Optical couplers and connectors
- • Diffractive optical elements
- • Microfluidic systems

mr-UVCur26SF

- Step & Repeat NIL processes
- Large-area nanostructuring of flexible substrates
- Continuous R2R photo-NIL processes
- High volume manufacturing of on flexible sustrates
- Antireflective coatings
- (Super)Hydrophobic patterns
- Wire-grid polarizers

Application examples

InkOrmo

InkOrmo microlens printed on pre-patterned substrate, diameter of 100 μ m (Printed at EPFL, Courtesy of Cosemi Technologies Inc., USA)

Microsoft <t

InkOrmo microlens array on OrmoComp platforms with 100µm diameter as a confining pattern (Courtesy of EPFL/Switzerland)

Exemplary InkOrmo microlens on pretreated glass substrate (100µm diameter)

mr-UVCur26SF

Functional Materials for Inkjet Printing

Left: Inkjet dispensed droplets. Right: subsequent imprinted submicrometer lines. (Courtesy of Fraunhofer IISB, Germany, 5)

Biconvex InkEpo microlens made by a combination of inkjet dispensing and UV replication

SEM images of (c) SU-8 platforms and (d) the corresponding lenses after performing the IJP of the InkEpo onto the platforms. (Courtesy of EPFL, Switzerland)

Application note

InkOrmo microlenses with specific profile by confining the microlens footprint

InkEpo

- Footprint topography or chemically confined
- Direct printing of final microlenses
- Specified and controlled lens profile

InkOrmo microlens with different optical characteristics (Cooperation with EPFL, PSI and Lyncée Tec, Switzerland)