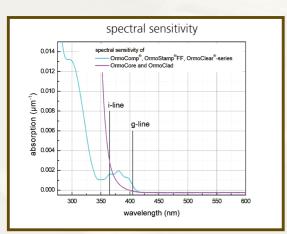
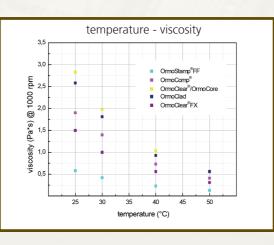


PFAS-free products we pay attention

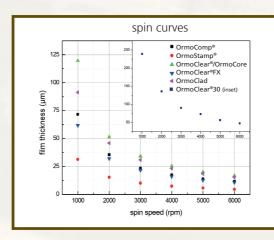
UV-Curable Hybrid Polymers

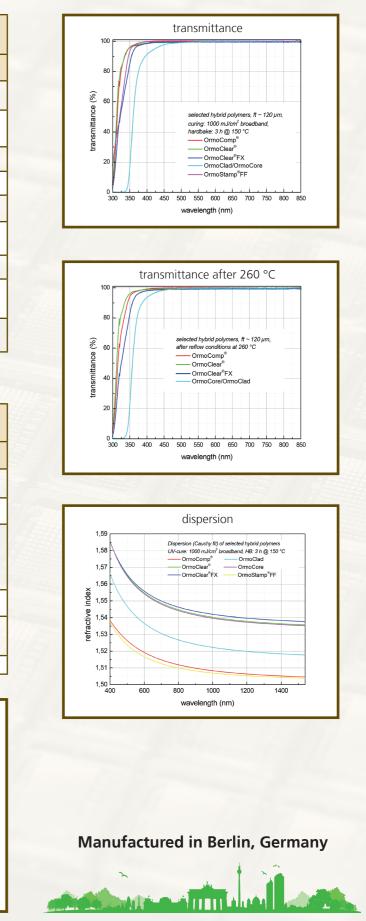
Hybrid polymers

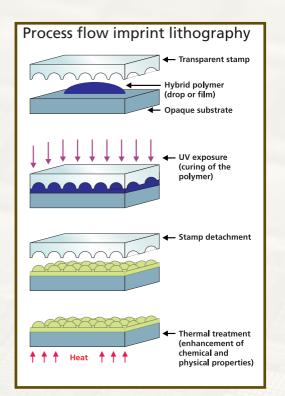

High perfomance materials for micro optics, photonics...

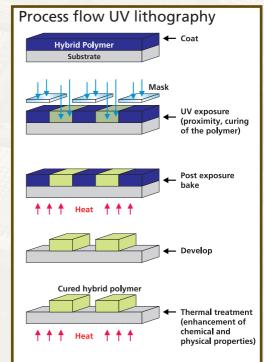

Properties of the cured materials											
Parameter	OrmoComp®	OrmoClear®	OrmoClear [®] 30	OrmoClear [®] FX	OrmoClad	OrmoCore	OrmoStamp [®] FF				
Refractive Index @ 589 nm	1.52	1.55	1.56	1.55	1.53	1.55	1.51				
Transmission @ 400 nm [%], layer thickness 120 μm	99.3	98.8	98.7	98.5	91.2	91.2	98.3				
Abbe number	47	34	34	34	33	34	n.d.				
dn/dT (589 nm) [10⁴ K]	-2.0	-2.1	-2.3	-2.7	-2.7	-2.2	n.d.				
CTE (20 - 150 °C) [ppm/K]	150	150	160	160	180	150	140				
Youngʻs modulus [GPa] @ 1Hz, 25°C, DMA	~2	~1.7	~1.8	~1.3	n.d.	~1.7	1.8				
Shore D Hardness*	75	75	>80	80	80	75	>80				
Optical loss [dB/cm] @ 1310/1550 nm, TE mode	0.3/0.2	0.3/0.7	n.d.	0.3/0.4	0.3/0.5	0.3/0.7	n.d.				
Application examples	Micro lei		des, gratings, DOEs, micr n-chip	Wave	Fabrication of poly- meric working stamps						

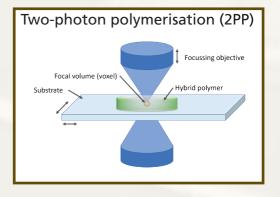

* According to DIN53505 with cone tip 30


** Any viscosity between 30and 30 Pa*s available upon request

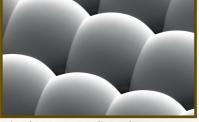

Properties of the liquid materials										
Parameter	OrmoComp®	OrmoClear®	OrmoClear [®] 30	OrmoClear [®] FX	OrmoClad	OrmoCore	OrmoStamp [®] FF			
Viscosity @ 25 °C [Pa*s]	2.0 ± 0.5	2.9 ± 0.3	30 ± 3	1.5 ± 0.3	2.5 ± 0.5	2.9 ± 0.4	0.5 ± 0.1			
Density [g/cm ²]	1.14	1.17	1.18	1.18	1.21	1.17	1.11			
Film thickness by spin-coating [µm] 3000 rpm 6000 - 1000 rpm	20 10 - 60	30 20 - 95	100 50 - 270	20 10 - 60	30 20 - 90	30 20 - 90	10 5 - 31			
Volume shrinkage [%]	5 - 7	3 - 5	<2	3 - 5	2 - 5	2 - 5	4 - 6			
Oxygen sensitivity during UV-curing	no	yes	yes	no	yes	yes	no			
PFAS-free	yes	yes	yes	yes	no	yes	yes			



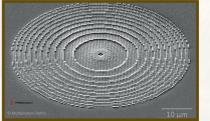


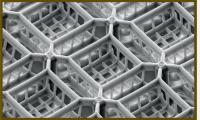


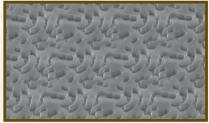
... and more

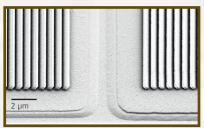


Replicated 16 level DOE structure in OrmoStamp[®] with 500 nm pixel size (Courtesy of NILT, Denmark)

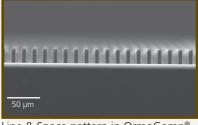

Microlens array replicated in OrmoStamp[®] (Courtesy of Carl Zeiss Jena GmbH, Germany)

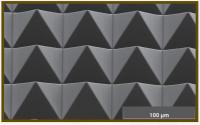

Waveguides in OrmoCore on OrmoClad made by UV-lithography (Courtesy of TU Dresden, Germany)

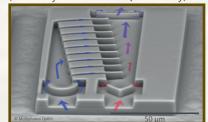

Binary test pattern for UV lithography in OrmoComp[®]


Metalens structure fabricated in OrmoComp[®] by 2PP (Courtesy of HIMT, Germany)

Structure printed by 2PP in OrmoComp[®] for cell studies (Courtesy of KIT, Germany)


Diffractive optical structure replicated in OrmoClear®

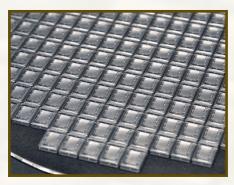

Slanted gratings in OrmoStamp[®] fabricated by replication (Courtesy of NILT, Denmark)


Cavity of 1.5 mm diameter in OrmoComp[®] fabricated by UV-lithography

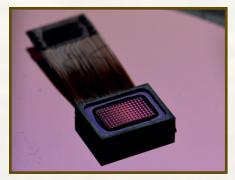
Line & Space pattern in OrmoComp[®] using i-line stepper lithography

Optical structure fabricated in Ormo-Comp[®] by 2PP (Courtesy of nanoscribe, Germany)

Microfluidic structure printed in OrmoComp[®] by 2PP (Courtesy of HIMT, Germany)

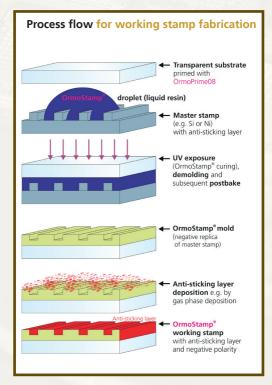

Hybrid polymers applications examples

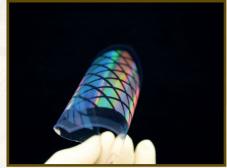
OrmoComp[®] microlenses on glass fabricated by wafer level UV-replication (Courtesy of FhG IOF, Germany)


10 mm stent structure fabricated by 2PP in OrmoClear®FX (Courtesy of Vital3D Technologies, Lithuania)

Microlens array in OrmoComp[®] fabricated by step&repeat UV-replication (Courtesy of FhG IOF, Germany)

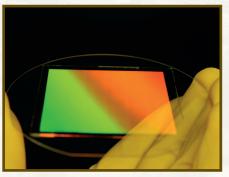
Scaffold of a human ear in OrmoComp® fabricated by 2PP (Courtesy of HIMT, Germany)

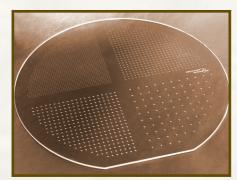



Optical component with integrated microlens array made of OrmoComp[®] (Courtesy of FhG IOF, Germany)

OrmoComp[®] macroscopic lens fabricated by combination of soft NIL and inkjet printing

Transparent polymer working stamps




Nanometer test pattern in OrmoStamp[®]FF on polycarbonate foil

Main features

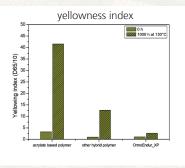
- ⇒ For UV and Thermal NIL
- ⇒ Cost efficient alternative to quartz
- ⇒ Excellent pattern replication down to 10 nm
- ⇒ High mechanical stability

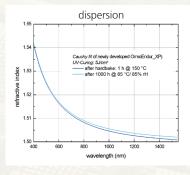
OrmoStamp®FF on glass substrate

Replication in OrmoStamp[®] using 6 inch glass substrate

Hybrid polymers highlights and experimental products

Highlight: Our classic stamp material now PFAS free - OrmoStamp®FF

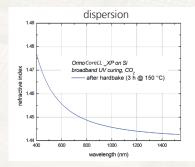

Main features



- ⇒ Based on proven base recipe but now PFAS free
- Improved wetting behavior and homogeneity in spin coating applications
- ⇒ Improved shelf life
- ⇒ Experimental inkjetable version available

Experimental products:

OrmoEndur_XP with enhanced durability for automotive projected lighting



Main features

- ⇒ Preservation of transarency >95% after 1000 h @130 °C in 500 µm film
- ⇒ Maintainance of optical properties after damp heat storage (85 °C/ 85 %rH)

OrmoCoreLL_XP with ultra low optical loss for photonic integrated circuits

Main features

- ⇒ Low optical loss <0.25 dB/cm @ 1310 nm & 1550 nm
- ➡ Refractive index ~1.45 adapted to fused silica

Contacts:

micro resist technology GmbH Köpenicker Str. 325, 12555 Berlin Germany Telefon: +49 30 64 16 70 100 E-Mail: sales@microresist.de

