

Functional Materials for Inkjet Printing

- InkOrmo
- InkEpo
- mr-UVCur26SF

Broad range of applications

- Optical components (transparency and stability)
- Packaging (stability)
- Nano Imprint Lithography (low residual layer thickness)
- Etch mask for plasma etching (stability)

Unique features of our materials

- Compatible with commercial inkjet printing equipment
- Tailored for stable drop generation
- UV-curable formulations

- Made in Germany -

micro resist technology GmbH Gesellschaft für chemische Materialien spezieller Photoresistsysteme mbH

Köpenicker Str. 325 12555 Berlin GERMANY phone +49 30 fax +49 30 mail sales@m info www.mic

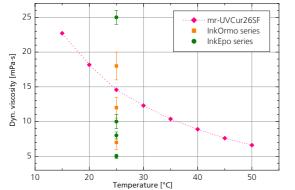
+49 30 64 16 70 100 +49 30 64 16 70 200 sales@microresist.de www.microresist.com

August 2018

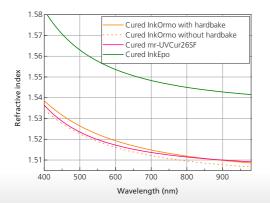
Product overview

Inks ¹	InkOrmo* series	InkEpo* series	mr-UVCur26SF
Type of material	Optical polymer	Optical polymer	Resist
Properties before	UV-curing		
Viscosity at room tem- perature (25 °C) [mPa·s]	7.0 ± 1.0 12 ± 1.5 18 ± 2	5.0 ± 0.3 8.0 ± 0.5 12 ± 1 25 ± 1	15 ± 2
Solvent free	No	No	Yes
Photo curing spectral sensitivity [nm]	300 – 410	300 – 390	365 – 405²
Oxygen sensitive curing	No	No	Yes ³
Properties after U\	/-curing		
RI (at 589 nm) after curing	1.517 – 1.520 ⁴	1.5554	1.518
CTE (20 – 100 °C) [ppm/K]	60	~ 50	n/a
dn/dT [10 ⁻⁴ /K]	-2.0	-0.7	TBD
Young Modulus [GPa]	~ 1	~ 2	n/a
Hardnoss (indentation)			

RI (at 589 nm) after curing	1.517 – 1.520 ⁴	1.5554	1.518
CTE (20 – 100 °C) [ppm/K]	60	~ 50	n/a
dn/dT [10 ⁻⁴ /K]	-2.0	-0.7	TBD
Young Modulus [GPa]	~ 1	~ 2	n/a
Hardness (indentation) [MPa]	68 ± 1	-	n/a
Water absorption	< 0.5%	< 0.5%	TBD


¹ Our inks are compatible and have been tested on several inkjet printing tools. List available upon request ² Hg bulb lamp or monochromatic LED ³ Formation of an inhibition layer when UV-cured in presence of oxygen ⁴ Depends on hard-bake conditions

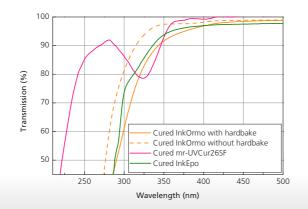
Viscosity


for Inkjet Printing

aterials

Functional

Optical properties

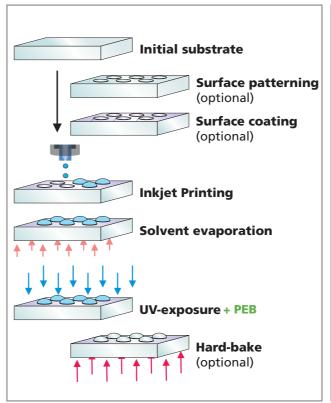

Specific properties

InkOrmo* and InkEpo*

- • Permanent applications
- • Optimized for optical applications
- High thermal stability up to 300 °C (short term), 270 °C (long term)
- • High physical and chemical stability
- • Excellent mechanical properties

mr-UVCur26SF

- Solvent-free ink
- Compatible with NIL** process
- Optimized for easy demolding after NIL
- Excellent plasma etch resistance
- No evaporation of formulation components



¹ The transmission is given for a thickness of 20 µm for InkOrmo, and a thickness of 1 µm for InkEpo and mr-UVCur26SF

*Inkjetable optical polymers: EP 2 159 040 B1 "Micro optical articles, process for their production and uses" **NIL stands for Nano Imprint Lithography

Processing examples

¹ The solvent evaporation step can be done with or without heating depending on process constraints ² Either the substrate or the stamp needs to be transparent in the range of 365 - 405 nm

Substrate preparation

Adhesion

• Adhesion improved by the use of an adhesion promoter

InkOrmo - OrmoPrime®08 InkEpo - not required

Surface energy modification

• The profile of the printed droplet can be controlled by modifying the substrate surface energy

InkOrmo & InkEpo - Allows to reach a higher / lower profile

Surface pre-pattern

• Possible to print on substrates involving topography

InkOrmo & InkEpo - Topography can be specifically designed to confine InkOrmo onto desired locations

Process highlights and possible continuations

- Process compatible to non-flat as well as curved substrates and roll-to-roll (R2R)
- High compatibility to processes leading to high throughput and monolithic components

Suggested applications

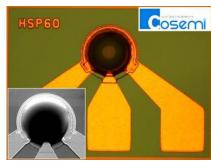
InkOrmo & InkEpo

- Microlenses (single or arrays)
- Optical waveguides
- Optical couplers and connectors
- Diffractive optical elements
- Microfluidic systems

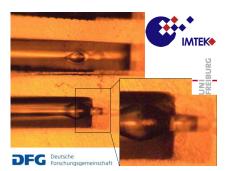
Example for NIL mr-UVCur26SF

mr-UVCur26SF - mr-APS1

mr-UVCur26SF - Allows to increase the volume deposited / surface area for high-aspect-ratio NIL cavities

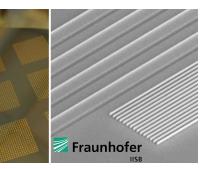

mr-UVCur26SF

- Step & Repeat NIL processes
- Large-area nanostructuring of flexible substrates
- Continuous R2R photo-NIL processes
- High volume manufacturing on flexible substrates of: - Antireflective coatings
- (Super)Hydrophobic patterns
- Wire-grid polarizers


www.microresist.com

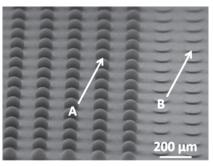
Application examples

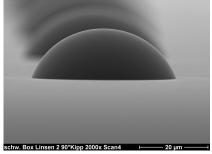
InkOrmo



InkOrmo microlens printed on pre-patterned substrate, diameter of 100 μ m (Printed at EPFL, Courtesy of Cosemi Technologies Inc., USA)

Inkjet-printed waveguide with 100 μ m core and 300 μ m cladding. (Courtesy of IMTEK, Germany, 2)


mr-UVCur26SF

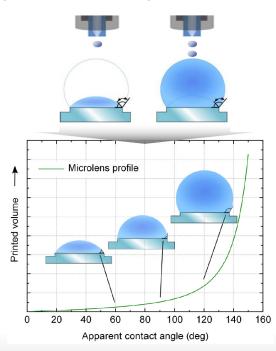

Left: Inkjet dispensed droplets. Right: subsequent imprinted submicrometer lines. (Courtesy of Fraunhofer IISB, Germany, 5)

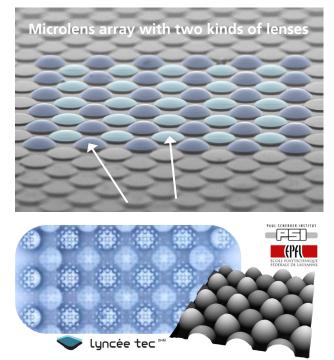
InkEpo

Functional Materials for Inkjet Printin

Array of InkEpo microlenses on 100 μ m wide Si platforms (A) lenses on a platform, (B) empty platforms. (Courtesy of EPFL, Switzerland)

SEM pictures of cured InkEpo lens with Ø 45 μ m, 10 drops per lenses on surface-treated glass slides. (Courtesy of EPFL, Switzerland)




SEM images of (c) SU-8 platforms and (d) the corresponding lenses after performing the IJP of the InkEpo onto the platforms. (Courtesy of EPFL, Switzerland)

Application note

InkOrmo microlenses with specific profile by confining the microlens footprint

- Footprint topography or chemically confined
- Direct printing of final microlenses
- Specified and controlled lens profile

InkOrmo microlens with different optical characteristics (Cooperation with EPFL, PSI and Lyncée Tec, Switzerland)